254 research outputs found

    Feature extraction based on bio-inspired model for robust emotion recognition

    Get PDF
    Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin

    Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)

    Get PDF
    Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear. Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese. Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire. Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19). Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ÂŻbγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer Îșλ but also of the quartic HHV V (V = W, Z) coupling modifer Îș2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit ”HH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < Îșλ < 6.9 and −0.5 < Îș2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and Ότ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → Ότ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓΜℓΜτ) and hadronic (τ → hadrons Μτ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → Ότ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → Ότ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → Ότ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF

    Model-independent search for the presence of new physics in events including H → γγ with s \sqrt{s} = 13 TeV pp data recorded by the ATLAS detector at the LHC

    Get PDF
    Abstract A model-independent search for new physics leading to final states containing a Higgs boson, with a mass of 125.09 GeV, decaying to a pair of photons is performed with 139 fb−1 of s s \sqrt{s} = 13 TeV pp collision data recorded by the ATLAS detector at the Large Hadron Collider at CERN. This search examines 22 final states categorized by the objects that are produced in association with the Higgs boson. These objects include isolated electrons or muons, hadronically decaying τ-leptons, additional photons, missing transverse momentum, and hadronic jets, as well as jets that are tagged as containing a b-hadron. No significant excesses above Standard Model expectations are observed and limits on the production cross section at 95% confidence level are set. Detector efficiencies are reported for all 22 signal regions, which can be used to convert detector-level cross-section limits reported in this paper to particle-level cross-section constraints

    Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector

    Get PDF

    Combination of searches for invisible decays of the Higgs boson using 139 fb−1 of proton-proton collision data at root s=13 TeV collected with the ATLAS experiment

    Get PDF

    Measurement of the H → γ γ and H → ZZ∗ → 4 cross-sections in pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive Higgs boson production cross section is measured in the di-photon and the Z Z∗ → 4 decay channels using 31.4 and 29.0 fb−1 of pp collision data respectively, collected with the ATLAS detector at a centre of-mass energy of √s = 13.6 TeV. To reduce the model dependence, the measurement in each channel is restricted to a particle-level phase space that closely matches the chan nel’s detector-level kinematic selection, and it is corrected for detector effects. These measured fiducial cross-sections are σfid,Îł Îł = 76+14 −13 fb, and σfid,4 = 2.80 ± 0.74 fb, in agreement with the corresponding Standard Model predic tions of 67.6±3.7 fb and 3.67±0.19 fb. Assuming Standard Model acceptances and branching fractions for the two chan nels, the fiducial measurements are extrapolated to the full phase space yielding total cross-sections of σ (pp → H) = 67+12 −11 pb and 46±12 pb at 13.6 TeV from the di-photon and Z Z∗ → 4 measurements respectively. The two measure ments are combined into a total cross-section measurement of σ (pp → H) = 58.2±8.7 pb, to be compared with the Stan dard Model prediction of σ (pp → H)SM = 59.9 ± 2.6 p
    • 

    corecore